Benefit of 3T Diffusion-weighted Imaging in Comparison to Contrast-enhanced MR Imaging for the Evaluation of Disseminated Lesions in Primary Malignant Brain Tumors

نویسندگان

  • Yoshihito Kadota
  • Toshinori Hirai
  • Hideo Nakamura
  • Keishi Makino
  • Shigetoshi Yano
  • Shinichiro Nishimura
  • Machiko Tateishi
  • Minako Azuma
  • Mika Kitajima
  • Yasuyuki Yamashita
چکیده

PURPOSE We aimed to determine whether 3T diffusion-weighted imaging (DWI) has an additive value relative to contrast-enhanced MR imaging for the detection of disseminated lesions in patients with primary malignant brain tumors. METHODS We included consecutive 12 patients with nodular disseminated lesions of primary malignant brain tumors that were confirmed by surgery or follow-up MR imaging. All underwent conventional MR imaging, DWI at b = 1000 and 3000 s/mm2, post-contrast T1-weighted and 3D gradient-echo imaging at 3T. For the largest lesion per person, two radiologists independently evaluated the presence of additional information on DWI compared with postcontrast MR images using a 4-point scoring system. On DW images, one radiologist measured the lesion-to-brain contrast ratio (LBCR). RESULTS Compared with postcontrast studies, radiologists 1 and 2, respectively, assigned more apparent lesion conspicuity in 2 (17%) and 1 (8%) DWI at b = 1000 s/mm2 and 4 (33%) and 5 (42%) DWI at b = 3000 s/mm2 studies. For one of them, the mean score was significantly higher for b = 3000 s/mm2 than b = 1000 s/mm2 (P < 0.05). Interobserver agreement for DWI at b = 1000 s/mm2 and b = 3000 s/mm2 was very good (κ = 0.85; 95% CI, 0.63-1.00) and excellent (κ = 0.93; 95% CI, 0.78-1.00), respectively. The mean LBCR was significantly higher for DWI at b = 3000 s/mm2 than DWI at b = 1000 s/mm2 (P < 0.01). CONCLUSION In the detection of disseminated lesions in patients with primary malignant brain tumors, 3T DWI has an additive value relative to contrast-enhanced MR imaging. DWI at b = 3000 s/mm2 may be more useful than DWI at b = 1000 s/mm2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Contrast Magnetic Resonance Imaging (DCE-MRI) and Diffusion Weighted MR Imaging (DWI) for Differentiation between Benign and Malignant Salivary Gland Tumors

Background: Salivary gland tumors form nearly 3% of head and neck tumors. Due to their large histological variety and vicinity to facial nerves, pre-operative diagnosis and differentiation of benign and malignant parotid tumors are a major challenge for radiologists. Objective: The majority of these tumors are benign; however, sometimes they tend to transform into a malignant form. Functional M...

متن کامل

Quantification of blood-brain-barrier permeability dysregulation and inflammatory activity in MS lesions by dynamic-contrast enhanced MR imaging

Objective: Measurement of blood-brain permeability dysfunction in active and chronic MS lesions with T1-weighted dynamic contrast-enhanced MRI to show variation in inflammatory activity Background: blood-brain-barrier perfusion characterization impaired in MS as some studies have shown recently buta comparison between perfusion parameters in contrast-enhanced and non-enhanced lesions not have ...

متن کامل

Evaluation of Diffusion Anisotropy and Diffusion Shape in Grading of Glial Tumors

Background: The most common primary tumors of brain are gliomas. Grading of tumor is vital for designing proper treatment plans. The gold standard choice to determine the grade of glial tumor is biopsy which is an invasive method.Objective: In this study, we try to investigate the role of fractional anisotropy (diffusion anisotropy) and linear anisotropy ...

متن کامل

SWI: Probe for neuroradiologists

Susceptibility-weighted imaging (SWI) has continued to develop into a powerful clinical tool to visualize venous structures and iron in the brain and to study diverse pathologic conditions. It is a new art which evaluates and exploits the properties of blood, iron and other tissues. It is a magnitude or filtered phase images or combination of both, obtained with high-resolution 3D fully velocit...

متن کامل

Differentiation of active tumor from edematous regions of glioblastoma multiform tumor in diffusion MR images using heterogeneity analysis method

Background: Due to intrinsic heterogeneity of cellular distribution and density within diffusion weighted images (DWI) of glioblastoma multiform (GBM) tumors, differentiation of active tumor and peri-tumoral edema regions within these tumors is challenging. The aim of this paper was to take advantage of the differences among heterogeneity of active tumor and edematous regions within the gliobla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2017